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When a solute is injected into a straight circular tube through which a solvent is 
in steady laminar flow it spreads out longitudinally under the combined effect of 
molecular diffusion and advection with the flow. Taylor (1953) showed that, pro- 
vided there is no density difference between the solute and the solvent, the distri- 
bution of mean concentration satisfies a diffusion equation with a certain longi- 
tudinal diffusivity for large times and with respect to axes moving with the dis- 
charge velocity. In  the present paper it is shown by a general argument that this 
statement, remains true if the pipe is uniformly curved. An expression is given for 
the diffusivity, valid when the radius of curvature is sufficiently large. For all 
common liquids and most gases the diffusivity is reduced by the curvature. The 
rest of the paper deals with the effects of buoyancy forces caused by a density 
difference between the solute and the solvent, when the tube is horizontal. It is 
shown that in general a longitudinal diffusivity does not exist and an equation is 
derived that replaces the diffusion equation if the effects of buoyancy are small. 
A prediction from this equation is that buoyancy should not have a noticeable 
effect on the longitudinal dispersion for PQclet numbers near a certain value at 
which the two opposing influences of horizontal spreading due to gravity and 
lateral mixing due to secondary flow are in balance. This prediction is consistent 
with some observations made by Reejhsinghani, Gill & Barduhn (1966). 

1. Introduction 
This paper is concerned with the longitudinal dispersion of a solute, subject to 

molecular diffusion, when it is introduced into a circular tube through which a 
solvent is in steady laminar flow. It was first shown by Taylor (1953) that the 
combined effect of molecular diffusion in a lateral plane and of advection on the 
distribution of concentration of a cloud of solute is ultimately to make it spread 
out symmetrically about a point moving with the mean flow velocity W.  The 
mean concentration over the cross-section satisfies a diffusion equation asymp- 
totically (i.e. as t - too),  with a certain longitudinal diffusivity. For the case of 
Poiseuille flow in a straight circular tube, and with neglect of molecular diffusion 
in the axial direction, this diffusivity is a2 W 2 / 4 8 ~  where K is the molecular dif- 
fusivity and a. the pipe radius. It was later shown by Aris (1956) that axial mole- 
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cular diffusion makes an independent contribution so that the total longitudinal 
diffusivity D is 

a2 w2 
D = K+- 

4 8 ~  * 

Numerical work by Ananthakrishnan, Gill & Barduhn (1965) shows that 
Taylor’s theory, without Aris’s modification, is valid provided that the PBclet 
number P( = W ~ / K )  is greater than 50 and the time after injection is greater than 
u ~ / K ,  and that with Aris’s modification it is asymptotically valid for all P. 

The applications of this theory appear numerous. Taylor originally suggested 
that values of K might be found conveniently by measuring D.  Amongst other 
applications are those to chromatographic columns (Van Deemter, Broeder & 
Lauwerier 1956), distillation processes (Aris 1959) and blood flow (see the dis- 
cussion in Lighthill 1966). 

In  the present paper we discuss the applications of Taylor’s theory to disper- 
sion of a neutrally buoyant solute in a circular pipe curved in a circular arc, and to 
the dispersion of a non-neutrally buoyant solute in a straight horizontal circular 
pipe. It is convenient, first of all, to recall the arguments used by Batchelor (1966) 
which give a definite sufficient criterion for the existence of a longitudinal diffusiv- 
ity. These arguments were originally presented in the context of the probability 
distribution of a single fluid particle in turbulent flow through a pipe, but, as 
Batchelor points out, they are widely applicable. It is known that if the velocity 
of a fluid particle in a particular direction is a stationary random function of time, 
the dispersion (( Y - y)s}g increases as tg ,  as t + co, where t is the time that has 
elapsed since the particle’s position was known with certainty. Here the overbars 
denote ensemble means, and Y = Y( t )  is the displacement of the fluid particle in 
the direction under consideration. Also the probability distribution of Y ( t )  tends 
to a Gaussian form as t -+ 00. If now we regard the solute as a passive marker of the 
fluid molecules, these arguments are directly applicable to the case of the longi- 
tudinal dispersion of a cloud of solute, subject to molecular diffusion, which is 
advected by a solvent in laminar flow through a tube (or subject to turbulent 
diffusion in addition, if the flow is turbulent). All that is required is that flow con- 
ditions be uniform in the longitudinal direction, since the random phenomena 
called molecular diffusion and turbulent diffusion then have statistical properties 
which do not change with position down the tube. (In the case of molecular 
diffusion this condition is satisfied only if the molecular diffusion coefficient is 
independent of concentration. Throughout this paper it will be assumed that K is 
independent of concentration.) 

It should be pointed out that the concentration distribution need not have a 
Gaussian form asymptotically, although this will be so whenever the cloud of 
solute is initially of finite extent. The two statements, that as t + co, (i) the proba- 
bility distribution function of the displacement of a single fluid particle is a 
Gaussian function of Y ,  and (ii) the dispersion is proportional to t4,  are sufficient 
to show that the probability distribution function of a single fluid particle satis- 
fies a diffusion equation as t + 00 with a constant diffusivity, with respect t o  axes 
chosen so that = 0. It is then possible to deduce (Batchelor gt Townsend 1956) 
that the distribution of concentration of a cloud of solute satisfies the same 
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diffusion equation as $-too relative to axes moving with the mean velocity W. The 
asymptotic form of the distribution of concentration is then given by the relevant 
solution of this diffusion equation. 

It now becomes obvious that in the f i s t  case mentioned above, that of flow in 
a uniformly curved pipe, there will exist a longitudinal diffusivity. The secondary 
flow induced by the curvature has properties which do not change in the direction 
of the pipe axis, and this is the only necessary condition. The components of this 
secondary flow in the cross-sectional plane increase the lateral mixing, and make 
the distribution of concentratioii in a cross-sectional plane more uniform so that 
the flow is less effective in dispersing the material longitudinally. It may therefore 
be expected that the longitudinal diffusivity is reduced by the curvature, at any 
rate for small curvature when the secondary flow may be regarded as a perturba- 
tion of the basic Poiseuille flow. A lowering of the dispersion has been observed by 
Evans & Kenney (1965), and by Car0 (1966). It is interesting to note that Taylor 
(1954a) reported some experiments on turbulent flow in a curved channel, and 
observed a large increase in the longitudinal diffusivity. This is difficult to explain 
on the above argument, which should hold even in a turbulent flow, but Taylor 
( 1966), in a private communication, has pointed out that the intensity of the tur- 
bulence is probably much reduced in a curved pipe, relative to a straight pipe a t  
the same Reynolds number. This lowering of intensity will act to increase the 
dispersion since the turbulent diffusivity is lowered; presumably in Taylor’s 
experiments this effect is much greater than that due to the secondary flow. 

In  this paper an expression is given for the change in D in laminar flow due to 
the curvature, when this curvature is sufficiently small for the expressions for the 
secondary flow given by Dean (1927, 1928) to be valid. For all common liquids 
and for most gases, this expression does indeed predict a lowering of D. 

When one comes to the case in which the pipe is straight and horizontal, but 
the solute is of a different density from the ambient fluid, the problem is more 
complicated. Buoyancy forces associated with the density gradients set up 
secondary flows, and now the conditions are not stationary in the axial direction 
in general. The solute no longer acts as a passive marker of fluid particles since it 
gives rise to definite dynamical effects, and it is only in one special case, cor- 
responding to a uniform axial concentration gradient, that these effects are 
uniform in the longitudinal direction. 

In  work by Reejhsinghani et al. (1966) some observations are reported on this 
problem. Their experiments were carried out with duPont’s ‘Pontamine ’ 6 BX 
dye in distilled water in two horizontal tubes, of 1.5 and 5 mm. internal diameter. 
The maximum density difference between the dye solution and the pure water 
was 1.2 x lWg/ml.  For P below a certain critical value P, (which presumably 
depends on other variables like the ratio V / K ,  but was approximately 22.5 for the 
1.5 mm. tube) the dispersion was much greater than that predicted by the Taylor- 
h i s  formula, but for values of P greater than P, the dispersion was less. A qualita- 
tive explanation of these observations was given. There are two effects of the 
density difference. First, the axial density gradient causes an axial pressure 
gradient, and so a change in the axial velocity distribution, which, acting by 
itself, may increase the dispersion. A calculation of this effect was made by Taylor 
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in 1953 (but not published) in connexion with his original experiments. The 
second effect is due to the secondary flow in the cross-sectional plane set up by the 
radial variation of density. As in the case of the curved pipe this would be ex- 
pected to decrease the dispersion. To explain the dependence on P, Reejhsinghani 
et al. refer to the results of a paper by del Casal & Gill (1962) on the similar problem 
of the effects of buoyancy caused by a uniform axial temperature gradient on 
flow in a horizontal tube (but it must be noted that the boundary conditions for 
concentration are not the same as those used for temperature in the above paper 
so the analogy is not exact) in which the change in the friction factor caused by 
the above two effects was evaluated. Del Casal & Gill found that as P increased 
the effect on the friction factor of the secondary flow became more important than 
that due to the axial velocity change. Reejhsinghani et al. then inferred that the 
change in the dispersion was also dominated by the secondary flow for large P and 
thus should be negative in agreement with their observations. 

In  the present paper some calculations are presented which show the inter- 
action of the above effects and which are compared with the observations of 
Reejhsinghani et al. However, full understanding of the situation is not claimed. 
This must await a more detailed treatment (theoretical or numerical) of the full 
non-steady equations. 

2. Laminar dispersion in a straight circular pipe with no buoyancy 
In  this section a summary of the original work of Taylor and Aris is given for 

later use. We take axes as shown in figure 1. The equation for the concentration 
distribution C is 

(3.1) 

assuming that there is rotational symmetry of C. Here the axes are moving with 
the mean velocity so that X = x - Wt. 

The boundary conditions are: 

In  his original analysis Taylor made the following assumptions: 
(i) the transfer of C in the axial direction by molecular diffusion is small com- 

pared with that caused by advection, so that a2a2C/aX2 is assumed negligible; 
(ii) relative to axes moving with the mean velocity the motion is approximately 

steady so that aC/at = 0; Taylor showed that this means that the time-scale 
necessary for appreciable effects due to advection to appear (which is of the order 
of L/ W ,  where L is the length of pipe over which the material is spread) is much 
greater than that in which radial variations of concentration die away under the 
action of molecular diffusion; this is of the order of a2/K so that the condition is 
L $ Wa2/K (Taylor 1954b). 

ac/ar = 0 a t  r = 1; C finite a t  r = 0. (2.2) 

With these assumptions (2.1) becomes 

ac K a2c I lac), 
W(l-3r2)- ax = a2 -(- ar2 r iir 

Wa2 
and the solution is c = p + p -  (2r2-r4), 

8 K  
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where p is a constant. The mean concentration over a cross-section is C,, where 

so that 

Wa2 
= P x + P j p  

aC Wa2 
ax 24K 

C = Cm+-m---(-2+6r2-3r4).  

FIGURE 1. System of co-ordinates for straight pipe; (ra, 0, 2) are cylindrical polars and 
8 = 0 is the upward vertical. 

Now the rate of transfer of concentration across a plane moving with the mean 
velocity depends only on the radial distribution of C,  and is 

Q = 27i-az/01 W (  1 - 2r2)Crdr 

As Taylor pointed out, this expression has exactly the same form as if Cm were 
being diffused across planes moving with a velocity W by a process which obeys 
the diffusion law, with a diffusivity a2 W 2 / 4 8 ~ .  

Taylor now assumed that the same relationship between Q and aCm/aX holds 
approximately, even if aC/aX and aC/at are not constant, and thus that C, satis- 
fies a (one-dimensional) diffusion equation with diffusivity a2 W 2 / 4 8 ~ .  

Aris showed, by taking integral moments of (2.1), that, when the effect of axial 
molecular diffusion is included, this conclusion remains true but with a total 
longitudinal diffusivity given by 

D = K + a2 W 2 / 4 8 ~ .  (2.8) 

Taylor's result is a good approximation for large P .  

over the cross-section and using the boundary conditions yields 
Another proof of (2.8) is given here for later use. Taking the average of (2.1) 

where w = W ( 1 -  2r2). Now {wC}, represents the total advective flux across a 
plane moving with velocity W ,  and we know from the arguments in Q 1 that this 
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is of the same form as would be given by a diffusion process as t -+ co, that is, it is 
given by 

{wC}, = - D‘ __, acm (2.10) ax 
where D’ is a constant. We are then able to find D’ by choosing Cm to be exactly 
linear (Batchelor 1966). Thus we follow Taylor’s original analysis, and obtain 
I)’ = a2 W 2 / 4 8 ~  so that (2.9) becomes, as t+m, 

acm a 2  cm 
__ = ( K + D ’ ) -  

ax2 at 

(2.11) 

agreeing with (2.8). 
Both Taylor’s analysis and Aris’s extension are in agreement with numerical 

work and with experimental observations. The only reported disagreement is 
that given by Bournia, Coull & Houghton (1961), but this is almost certainly due 
to density effects (see the discussion in Reejhsinghani et al. (1966)). 

3. Laminar dispersion in a curved circular pipe with no buoyancy 
The velocity projiles 

The system of co-ordinates used in this section is shown in figure 2. ZOC and 
BOG‘ are a vertical and a horizontal plane respectively. 0 is the centre of curva- 
ture, and b the radius of curvature, of the coil in which the pipe is wound. It will 

L 
I 

B 

FIGURE 2. System of co-ordinates for curved pipe. 

be assumed that the motion is steady and independent of q5, except for the forcing 
pressure, which is a linear function of q5. In  fact we shall write 

where p’ is the pressure and po the fluid density: note that WL is then the mean 
velocity if the pipe is straight (when ( l / b )  8/84 is replaced by a/ax, where x is in the 
axial direction). We then non-dimensionalize the full equations of motion as 
follows. The length-scale for the radial co-ordinate is a (as already indicated in 
figure 2)’ the velocity scale for the axial velocity is W,, that for the cross-sectional 
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velocities is u/a,  and the pressure variation in a cross-sectional plane is non- 
dimensionalized by pou2/a2. The full equations of motion are then (Dean 1927) : 

) I - J  = s+[(a;+J (ar+T-)+;a(;z+-- 6 
8 a 1 aw swsin8 1 a l a w  E W C O S ~  

Here (u, w, w) are the non-dimensional velocity components corresponding to 
( r ,  8,#)  respectively and 

where pA is a reference pressure and p is independent of $. The equation of con- 
tinuity can be satisfied identically by writing 

We have written 
a 

; S=l+ersinB. (3-5) 

Thus there are two independent parameters, B and hr, in the problem. e specifies 
the geometry of the system and N the dynamics. If B (and so N ,  provided Woa/u 
is finite) is zero the solution (with a suitable choice for the zero of Y) is: 

Y = 0; w = 2(1-r2). 

It will be assumed that Y and w - 2( 1 - r2) can be written as double power series 
in B and N ,  the general term of which (for Y) isYm,em Nn. 

In  principle the terms in these series may be found by eliminating p from the 
first two equations of (3.2), substituting in the series expansions and comparing 
coefficients. Since r = 1 is a streamlineY,, will be zero for all m; despite this fact 
the procedure will become very heavy after one or two terms. In  this paper it will 
be assumed that there are ranges of values of B and N for which the following 
forms, given by Dean (1928) and Cuming (1952), are good approximations: 

The main ideas and arguments behind this rather drastic approximation can 
be summarized as follows. 

(a) Dean (1928) pointed out that taking the limit E -+ 0 in the equations while 
keeping N fixed retains the main dynamical effects due to centrifugal accelera- 
tion, but eliminates purely geometrical effects. 

( b )  If there is a range of e for which (a) is valid, N should be a dynamical similar- 
ity coefficient for the flow. That this is true for laminar flow was verified by White 
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(1929), who plotted the ratio of the friction coefficient) in a curved pipe to that in 
a straight pipe at the same Reynolds number against N ,  and found that the results 
of four sets of experiments with values of E ranging from 0-0664 to 0.0005 lay on a 
single curve (but E was important in determining the critical Reynolds number 
for the onset of turbulence). 

(c)  Cuming (1952) extended Dean’s work to cover the case when the pipe is of 
elliptical cross-section, and gave an expression for w which is the first two terms 
of the full expansion. He made the remark that in the circular case ewl0 is numeric 
ally small compared with Nwol; because of this he neglected wl0, wz0 and wI1 when 
calculating the second-order terms. This reasoning is difficult to follow since the 
relative sizes of E and N must be relevant, but Truesdell (1963) found that his 
exact numerical solution for E = 0.01 and N = 0-25 agreed very well with 
Cuming’s approximate solution. 

These arguments suggest that if E is low enough its neglect is justifiable. The 
series expansions then reduce to terms in N alone. However the cutting off of 
these series after the N2-terms will place an upper limit on N .  Dean suggests that 
this upper limit is about 50 but there appears t o  be little or no relevant informa- 
tion about the value of this limit. If E -+ 0 the equations (3.4) reduce to 

(3.7,) 

Dean (1928) gives the following expressions, which we shall use in our evalua- 
tion of the distribution of concentration: 

Yol = fi(r) cos 8, 
wol = g,(r) sin 8, wo2 = g,(r) + g,(r) - - i  cos 28. 

For our purposes the values of fi(r) and g,(r) are not needed. The forms of fi(r)- 
g,(r) and g,(r) are given in an appendix. 

The mean axial velocity is W, where 

Yo, = f,(r) sin 28; 
(3.8) 

__ 

= Wo(1-AN2), (3.9) 

where A is a constant whose value is given in the appendix. 

The calculation of the concentration flux across a cross-section 

The equation for C ,  the distribution of concentration, is lion-dimensionalized 
using the same scales as previously. In  addition, the time t is replaced by T, 
where T = Kt/a2 and the non-dimensional variable ( is written for (bq5 - Wt)/a ,  so 
that the axes are moving with the mean velocity. Furthermore, it is again 
assumed that the limit E + O  can be taken provided E is small. The equation 
obtained is 

(3.10) 
aC cra(Y,C) 

r a(r,8) 

P is the PBclet number WalK, and cr = v / K .  
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It is known, for the reasons given in Q 1, that a longitudinal diffusion coefficient 
exists asymptotically whatever the initial form of the concentration. It is also 
again true that the effect of axial molecular diffusion, that is of the term a2C/at2, 
on this diffusivity is simply additive. This can be shown exactly as in $2, using 
the additional boundary condition that 'Y is constant at  r = 1. It is thus conveni- 
ent and simplest for the purpose of calculating this diffusivity to follow Taylor's 
original analysis, presented in Q 2, and consider the case when aC/at is constant, 
since this distribution will be exactly steady in the axes we are using. Thus the 
equation to be solved is 

where aCjac is constant. The boundary conditions are given in equation (2.2). 
We write 

(3.12) 

since aCm/at = aC/at when the latter is constant. Substituting in (3.11) and com- 
paring coefficients, we find 

( ( 1  - 2r2), n = 0; 

where 

(3.13) 

On using the expressions above for Y and w7 the solutions are obtained in the 
form : 

(3.14) i co = 4(29-r4), 

C, = h,(r) sin 8, 

C2 = h2(r) + h,(r) cos 28. 

The value of h2(r) is not needed here, but the expressions for h,(r) and h,(r) are 
given in an appendix. 

The rate of transfer of concentration across a plane moving with the mean 
velocity is Q where 

~ 

From the above expressions it is found that 

( 1i40)2 ( 2569 g2+%). 
33 

(3.15) 
90 

Qo=-l;  Q 1 = O ;  Q 2 = -  ~ -__ 
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1440 33 
(3.16) 

It is probably more convenient to write this in terms of W ,  the actual mean 
velocity given by (3.9). We replace W, by W(1 + A N 2 )  throughout (except that in 
N we may simply replace W, by W to the order of this work) and obtain 

D = !?!? 4 8 ~  [ 1 + (L)' 1440 ( - 2569 33 132 + T)] , (3.17) 

where now 

Some comments on the value of the longitudinal diffusivity 
It can be shown that D is an even function of N ,  so that the next term in (3.17) is 
of order N4.  The equations obtained from (3.2) by letting e+O, and equation 
(3.11) are invariant, as are the boundary conditions, under the following trans- 
formations: 

N - t  - N ;  8-t -8 ;  V+ -v;  U+U; W+W;P+P;  C + C ;  [+[. (3.18) 

Thus the flux Q with a change in sign of N is 

= QW, (3.19) 

since clearly W (  - N )  = W ( N )  from (3.18). Equation (3.19) is still true even when 
e is not zero, for it can easily be seen that the full equations are invariant under 
the transformations (3.18), if in addition E+ - E and 7-f 7. The transformations 
(3.18) have a clear physical interpretation. A change of sign in N can only be 
interpreted as a change of sign in the curvature of the coil in which the pipe is 
wound, so that, in figure 2, 0 is replaced by its mirror image in the plane 8 = 0. 
Clearly the solutions are then obtained by reflexion in the same plane, and this 
consideration yields (3.18). 

The term independent of N in (3.16) and (3.17) is the solution obtained by 
Taylor, and the additional term gives the effect of the curvature. It can be seen 
from (3.17) that D is reduced by the curvature only if LT > 0.57. 

The explanation of the peculiar effect of a small value of v is that the change in 
D caused by the secondary flow is small compared with that due to the change in 
the axial velocity profile, as can be seen from the equations for C, and C, in (3.13). 
If, in the equation for C,, we compare the orders of the two terms on the right- 
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hand side, using the values previously found for Co and Yo, we find that their 
ratio is of order CT. Clearly the term involving Yo, is the effect of the secondary 
flow in the cross-sectional plane, and the first term represents the effect of the 
change in the axial velocity. A similar analysis applies to the equation for C,. 
Thus, for small CT, the changes in C of order N ,  and of order N 2 ,  and so also in D 
are caused by the change in the axial velocity profile. It is equivalent to argue 
that, if K is very large, the lateral mixing is dominated by molecular diffusion, 
and not by advection with the secondary flow. However, for all common liquids 
and for most gases, D is reduced by the curvature for the reasons given in the 
introduction. 

The difference between (3.16) and (3.17) is that (3.16) gives the change in D due 
to pipe curvature when the pressure gradient is kept fixed, and (3.17) that when 
the mean velocity is kept fixed. The difference is important only if CT is very small. 

Although Dean suggests that his expressions for the velocities are valid for N 
up to about 50, a more severe restriction may arise from the need for D to be 
positive. This implies that the expression (3.17) cannot be valid unless 

70 * 
(3.20) 

For a case in which CT = lo3 this requires N < 0-163, so that when e = lo-,, 
Wa/v must be less than 4.04. When r~ = 1 the requirement is that N < 199, so 
that when e = lo-,, Wa/v  must be less than 141. These considerations suggest 
that the formulae are likely to be more useful for diffusion in gases for which is 
generally near 1, than in liquids, for which values of CT are typically of order 103. 
There is the further point that the molecular diffusivity has been assumed to be 
independent of concentration. This is known to be a much better approximation 
for gases than for liquids. (This last point applies to all work done on this subject 
and not just to the present paper.) These remarks are only meant as indications; 
what is really needed is a radius of convergence of the series of which (3.17) is 
the first two terms. 

4. The effect of buoyancy forces on laminar dispersion in a horizontal 

Pipe Preliminary remarks 
For the reason given in the introduction, the case of flow of a solute in a straight 
pipe, when the density of the solute is different from that of the ambient fluid, is 
not one where we expect the longitudinal dispersion of the solute to be governed 
by a diffusion equation when t 3 a Z / ~  (although there is the possibility, discussed 
later, that for very large times, perhaps much greater than those necessary for 
Taylor’s analysis to be valid, the additional dynamical effects due to the buoy- 
ancy become negligible and then the Taylor solution may govern the final form 
of the mean concentration). However, if the local length scale of the distribution 
of concentration in the axial direction (e.g. (X7/ax)/(a2C/azz)) is large compared 
with W a 2 / ~  it is still permissible to calculate the flux of concentration Q across 
planes moving with the mean velocity assuming that the flow properties are 
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locally uniform and steady (with respect to axes moving with the mean velocity); 
this is exactly the assumption made by Taylor (1953) and explained in $2. The 
fact that there is now no longitudinal diffusivity shows itself in the form of Q ;  it  
will be found that Q is no longer a linear function of aCm/aX (where X = x- Wt 
and the axes are those of figure 1)) but contains terms proportional to all odd 
powers of aCm/aX. The equation for the mean concentration that takes the place 
of the diffusion equation is then found from the continuity equation for the 
concentration in the same manner and under the same assumptions as in Taylor 
(1953). 

In  this work the change in density caused by the concentration will be neglected 
except in the body force term, that is, except when the change in density is multi- 
plied by g. This approximation is the analogy of the well-known Boussinesq 
approximat,ion in the case when the density changes are caused by temperature. 
It will be assumed that the density of the fluid is given by 

p =po(l+aC),  

where po and a are constants, independent of concentration. 
The equations then admit solutions which are exactly steady with respect to 

axes moving with the mean velocity, and in which aC/aX and the velocity com- 
ponents are independent of X .  If a non-dimensional number G (defined in (4.8) 
and proportional to aC/aX) is small enough, the dependent variables can be 
expanded in power series in G. The introduction of the uniform concentration 
gradient causes the relationship between W ,  the mean velocity, and 

to  be different from that when G = 0. For convenience we write 

and the relationship is, to order G2, 

where A is a non-dimensional number. A similar relationship was found by Morton 
(1959) when the change was caused by a uniform temperature gradient. 

In our calculations it is convenient for reasons to be discussed later (and there 
is no loss of generality) to regard the value of W as given, so that the axial pressure 
gradient depends on G. 

The calculation o j  the concentration JEux 

We use non-dimensional velocity components (u, v, w) corresponding to  the co- 
ordinates (ra, 6, x) of figure 1 (with scales chosen so that the actual velocity is 
( iu /a ,  vv/a, Ww)). We leave the pressure in its dimensional form p’. With the 
above assumptions of steadiness with respect to axes moving with the mean 
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velocity and that aC/aX and the velocity components are independent of X ,  the 
equations to be solved are: 

ac 
- u-+-- +- (w-1) -  = v2c. 
K " (  ar r vat) 80 Wa2 K ax I 

On differentiating the first two of these equations with respect to X we find 
that ac 

ax po ar ax 
ac 

0 =  -- -- -ctgacos0- 
a ( "'1 

0 = - . 5 ( L F ) + a g a s i n 0 -  ax por a0 ax 

Thus, using the definition of I? (equation (4.1)), we find 

since aC/aX is constant. As before, the continuity equation is satisfied identically 
by using a stream function Y ( r ,  0) so that 

ac, ac, 
We write C = X-+a-P(r,O), ax ax (4.6) 

since, as in 332 and 3, aC,/aX = &?/ax. On eliminating p' and using (4.4), (4.5) 
and (4.6) we find 

1 qY, v v )  

1 a ( y , W )  vZw+r+-- 
r a(r,e) 

0- 
= - G - T c o s ~ ,  

P 

Wa p=-. 
v~ ax7 K '  K '  

aga4 aC,. G=-- where 

The boundary conditions are 

(i) as G-tO, w+2(1-r2),  

(ii) ~J2'jo1wrcirci0 = 1, 

(iii) w, Y, aYjar and 

(iv) 

= o  

are zero at  r = 1, 

all quantities are finite at  r = 0. 

(4.7) 

(4.9) 
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It has not been found possible to obtain an exact solution of the equations in 
closed form. We shall assume that Y, w, P and I? can all be expanded as power 

Y = Y o + G Y l + G 2 Y z +  ... (4.10) 
series in G, like 

and evaluate the terms up to the second order. If G = 0 the solution is that given 
in $2, viz. 

Yo = 0; wo = 2(1-99; Fo = QP(2r2-r4); ro = 8. 

On substituting the above expressions into the equations, and comparing the 
coefficients of G and G2, the following equations are obtained for the first and 
second order terms: 

The solutions are found to be of the following forms: 

(4.12) 

w1 = i l(r)  cos 8, 

Yl = j l ( r )  sin 8, 

Fl = kl(r) COB 8, 

w, = i2(r)  + iz(r) cos 28, 

Y, = j,(r) sin 20, 

F, = k&) + k,(r) cos 28. 
- - 

For our purposes the values of i,(r),j,(r) and k,(r) are not needed. The values of 
the other quantities are given in the appendix, together with the value of I?,, 
found from the condition that 

in fact rz = 8A. The value of rl is identically zero, establishing the resdt stated 
in (4.2). 

The flux Q is given by 

ac 2= 
= Wa3 $Io lo1 [(w, - 1) + Gwl + G2w,] [Po + GFl + G2F2] rdrd8 

= nu2 rg) 3 [Q, + GQ1 + G2Q2], (4.13) 



Laminar dispersion of solute in a horizontal tube 

say, to order 6 2 .  It is found from the above expressions that 

479 

Q - - 1 ;  Q 1 = O ;  Q 2 = -  
0 -  

2569 19797 10425 
197120 P2u2+- P 2 + 7  

We now wish to apply the above analysis to the case when aC/aX is not uni- 
form but is slowly varying. Consider an experiment in which a k i t e  quantity of 
solute is injected at  some point in the tube and then spreads out as it is advected 
downstream by the flow. Far upstream and downstream where G is zero I' has the 
value it had before the solute was introduced. Elsewhere, (4.2) shows that r is 
different at different values of X ,  since G varies with X .  Thus W and 
{ - ( l/po)(ap'/aX)}T=o cannot both be independent of X .  However, it is easily 
seen from the equation of continuity (V . u = 0 with the Boussinesq type approxi- 
mation)? that the mean axial velocity must be independent of X ,  so that W is 
equal to its undisturbed value everywhere in the tube; thus the axial pressure 
gradient and all other flow quantities vary since G varies with X .  This is the 
reason why we chose the mean velocity as given at  the beginning of the calcula- 
tion. 

The equation for the conservation of concentration is: 

(4.15) 

We shall assume that (4.14) is approximately true even if aC,/aX is not exactly 
uniform. This is the same assumption as was made by Taylor (1953) for the case 
a = 0, and proved correct by Aris (1956) (see $2).  On substitution (4.15) becomes 

(4.16) 

where Q2 is given in (4.14). Equation (4.16) is the equation that replaces the 
diffusion equation. 

Some comments on the f o m  of Q, and equation (4.16) 

It has been stated above that Q is an odd function of aC,/aX or equivalently that 

(4.17) 

is an even function of G .  The proof of this statement is essentially the same as that 
given in $3, and the details will not be given here. The equations (4.7) and the 
boundary conditions (4.9) are now invariant under the transformations 

G-t -G; 3+71.-3; r - t r ;  Y-t -Y; W+W; P+F; F-tF. (4.18) 

t If  the Boussinesq approximation is not made it is the mass flux and not the mean 
velocity that is independent of X ;  this is clearly equivalent and the above argument is un- 
affected if W is replaced by the constant value of the mass flux. For a calculation in which 
the Boussinesq approximation is not made see del Casal & Gill (1962). 
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The physical interpretation of (4.18) is most easily seen if we think of a change of 
sign in G as being caused by a change of sign in g .  It is then clear that the new 
solution is found by reflexion in the plane 101 = in, as expressed by (4.18). It is 
physically plausible that a change of sign in g will not change Q, and this is the 
same as S being an even function of G. It is equivalent to argue that a change of 
sign in aC,/aX will simply change the sign of Q.  (These statements are true in our 
problem but in the similar problem of Couette flow between two parallel infinite 
planes, with two-dimensional behaviour assumed, Q is not simply an odd or even 
function of aC,/aX; this is because the boundary conditions are not homogeneous 
and there is no symmetry analogous to that of the present problem.) 

The range of validity of the present analysis is difficult to estimate; it  must pre- 
sumably involve G being sufficiently small. Since we expect any concentration 
distribution to be continually spread out as time increases, G should eventually 
tend to zero everywhere so that there will be a time when the dominant correction 
to Q is of order G2. After this time the distribution of mean concentration should 
be described by (4.16). Since (4.16) is non-linear, it is possible that there are 
regions in which its solutions have very sharp changes, and that in these regions 
neither (4.16) nor the analysis leading to it is valid. But if the solutions of (4.16) 
are such that asymptotically aC,/aX tends to zero everywhere then eventually 
the term involving (aCm/aX)3 will be much smaller than that involving aC,/aX 
and then Taylor’s solution will become valid. It is clear, as mentioned above, that 
the time after which the diffusion equation becomes valid may be much greater 
than that for which Taylor’s original analysis is valid, and clearly cannot be 
smaller. 

If the inertia terms are neglected in the f i s t  three equations of (4.3), and the 
calculations repeated it is found that the value of Qo is unchanged and the new 

2569Paa2+60480- 
value of Q, is 

(4.19) 

that is, it is obtained from Q, by omitting the terms of zero and first order in a. 
With the aid of (4.19) the significance of the terms in expression (4.14) can be 
seen. The term in a2/P2 is that found by Taylor (1953; unpublished) and referred 
to in the introduction. It arises from the change in the axial velocity caused by 
the term in (4.4) proportional to aC/aX and acts to increase the dispersion. The 
term in P2a2 is negzztive and represents the lateral mixing effect that arises from 
the parts of u and v coming from the interaction between viscous forces and buoy- 
ancy forces. The extra terms in (4.14) are not important except for a less than 
about 10, and represent the effects of the small changes in velocity and concentra- 
tion caused by the non-linear terms in the Navier-Stokes equations. 

For small P ,  - Q, is positive and so the dispersion should be greater than that 
predicted by the Taylor-Aris solution, but as P increases the effect of the second- 
ary flow becomes more important. At a certain critical P, say P,, the two effects 
are in balance and as P increases further the dispersion becomes less than that 
predicted by Taylor. This dependence on P i s  t o  be expected from a consideration 
of the way in which the value of Q will vary when only W is varied. When W is 
zero, Q + 0 because of the axial motions set up by the longitudinal concentration 
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gradient. In  fact it is clear that for all W this mechanism gives a contribution to 
Q independent of W (in our calculations this contribution is that arising from the 
term in (4.14) proportional to a2/P2, whose contribution to Q is easily seen to be 
independent of W ,  using (4.13)). However the secondary flow effect does depend 
on W ,  for steady lateral variations of concentration (which are responsible for the 
secondary flow) can persist against the smoothing action of molecular diffusion 
only if the axial concentration gradient is being advected in the longitudinal 

A 0  Region A 

c Region B 

0 5 10 

FIGURE 3. The variation of P, with u. The dispersion is less than or greater than that pre- 
dicted by the Taylor-Aris theory according as the point (u, P )  is in region A or region B 
respectively. 

direction. This advection (and so lateral variations of concentration and lateral 
ve1ocities)isdominated bythe basic flow if G is sufficiently small, and so increases 
with W .  Thus as W (and so P, since only W is being varied) is increased the lateral 
mixing will eventually make a contribution to Q greater than that due to the 
change in the axial velocity. Thus eventually the dispersion should be reduced by 
the buoyancy. Our calculation and the above arguments confirm the qualitative 
explanation of Reejhsinghani et al. mentioned in 0 1. 

From (4.14) the value of P, depends only on CT, if G is small enough for our 
analysis to be valid, and is given by solving the equation Q, = 0. A graph of P, 
against CT is shown in figure 3. For large CT, P, approaches the constant value given 
by solving the equation Q; = 0,  that is 

31 

P,-+21.12 as cr-foo. (4.20) 
Fluid Mech. 29 
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It is interesting to compare these results with the observations made by 
Reejlisinghani et  al. Their value of v was 2900 which is large enough for (4.20) to 
be a very good approximation. In  their experiments with the 1.5 mm tube, they 
observed that for P = 6-25 the dispersion was 25 yo greater than that given by the 
Taylor-Aris theory, but that for P = 22.5, which is close to the value of P, pre- 
dicted by (4.20), the dispersion was given accurately by the Taylor-Aris theory. 
Both observations were made at values of r = ~ t / d  9 1. In  the experiments with 
the 5 mm tube, the value of P at which the effect of buoyancy on the dispersion 
was not noticeable was higher, being between 75 and 125; however the values of 
T used in these experiments were much lower, the highest being 2-80 and all the 
others being less than 1, and since Ananthakrishnan et aZ(1965) showed that the 
Taylor solution is valid only for T > 1, it is clear that our analysis is not valid for 
the values of T used in the 5 mm tube observations. (But it should be pointed out 
that Reejhsinghani et al. did not compare their experiments with Taylor’s solu- 
tion for T < 1, but with the numerical solution of Ananthakrishnan et al.) 

Finally a few remarks on the effect of axial molecular diffusion will be made. In  
our calculation K(  a2C/aX2) was identically zero, but an equation analogous to 
(2.9) holds in the general non-steady case provided only that the Boussinesq type 
approximation is valid. This equation is 

(4.21) 

and is derived by integration of the full concentration equation over the cross- 
section, using the continuity equation (V .u = 0) and the facts that u, v and aC/ar 
are zero at  r = 1. In  $82 and 3 it was possible to use the general analysis of 5 1 to 
show that { W ( w  - l)C}m, which is equal to Q ,  is asymptotically proportional to 
aC,,/aX. As explained above this analysis does not now apply. Nevertheless, if the 
approximation used by Taylor and used here in deriving (4.16) is valid, 
(W(w- l)C), is given .asymptotically by an expansion of the form of (4.13), 
with Q,,, Q, and Q2 given in (4.14). Then (4.21) shows that the effect of axial 
molecular diffusion is independent and additive, as in $52 and 3; thus the right- 
hand side of (4.16) is modified by an extra term + K ( ~ ~ C , / ~ X ~ ) .  
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Appendix 
Here the values of the functions referred to in $03 and 4 are given: 

1 
fi(r) = 72 [ - 4r + 9r3 - 6r5-tr7], 
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[19r - 4Or3 + 30r5 - lor7 + r9 ] ,  
1 

g,(r) = 1440 

[ - 41 19 + 21280r2 - 46340r4 + 55440r6 - 39830r8 
g2(r) = 350 x 5762 

+ 1 7584r1° - 462Orl2 + 640r14 - 35r16], 

[ - 256r + 285r3 - 200r5 + 75r7 - E r g  + rll] 

+- 0- [ -68r+  120r3- 130r5+75r7-21r9+2r1'], 

1 

hl(r) = 300 x 576 

60 x 576 

17 16 
--(T2+--(++- 
60 75 44800 

1 

251 

263 157 

73 29 33 11 7 (T + -) 1 r16 
-(mg2+mfl+156K0) r14f(2560g2+* 4480 

1 

P (7 
il(r) = -gl(r)+- ( r -r3) ,  

32 8P 

P2 r2 0- 
idr) = m 4 g A r )  + 4 (1 - r 2 )  + 40 1922 

x [ - 19 + 80r2 - 130r4 + lOOr6 - 35rs + 4r10], 
P 

jl(4 = - z f i ( T ) ,  

P2 0- 

32 192 
k,(r) = - h,(r) + ~ ( - 4r + 3r3 - r5 ) ,  

1 3082 A = - . -  
, 57621575' 

1541 (T 11 r2= ~ ~ 

( z 6 )  100800+576960' 
31-2 
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